

Core Data Model for Managing Taxonomic Names, Concepts, and
associated References

Richard L. Pyle

DRAFT

Last Updated: 19 November 2002

Pyle Taxonomy Schema – DRAFT OVERVIEW

OVERVIEW
Included below is a description of several “core” elements of the data model I have

developed for managing information relevant to Taxon Names, Taxon Concepts, and References.
My complete data model is much more expansive than this, but this document is limited in scope
to only the most fundamental and central components associated with tracking taxon names,
concepts, and associated references.

I’ve broken the data tables into three sections: Taxa (taxon names, concepts, and
associated data), Agents (people and organizations), and References (publications and other
forms of date-stamped information conveyance by one or more Agents). Each of these three
sections includes a text-based narrative explaining the tables and fields (entities & attributes),
plus a diagram or series of diagrams to illustrate the nature of the relationships among them.

The narrative includes a brief “Overview” (abstracting the overall data model subset)
followed by a more elaborated description of each major table, with descriptions of individual
fields. A “Limitations” section describes some of the known limitations of the relevant portion of
the illustrated model.

Notation on the diagrams more or less follows that used in FGDC_TaxNom.doc file,
distributed by Bob Peet as part of the summary of the FGDC Biological Data Working Group’s
“Biological Nomenclature/Taxonomy Meeting Summary”, held in Washington DC in November
2000. I’ve embedded a copy of the “Legend.pdf” file from that meeting, which can be viewed
by double-clicking the icon below (assuming you have Adobe Acrobat Reader installed).

Legend.pdf
For further clarification of the diagrams, within each box the table name appears at the

top of the box, and within each box there are as many as four kinds of attributes:

• Unique Keys. The fields in the this section of each entity box represent the uniquely-

identifying key fields of each table. All tables have a surrogate Primary Key, which usually
takes the name of the table (minus the “tbl_” prefix), with the addition of an “ID” suffix
(indicated in bold in the diagrams). In my implementation, these surrogate keys are almost
always long integers, with automatically-assigned random/arbitrary values, with no inherent
information content. In addition to the surrogate keys, if each instance (record) of a table can
also be uniquely identified by one non-surrogate field, or a combination of two or more other
non-surrogate fields (i.e., multi-part key), then I list these fields in this same section of each
box.

• Foreign Keys. These are foreign key fields that serve as the link to the surrogate Primary
Key of another table, but which do not constitute a portion of a multi-part unique key. They
are indicated in Red Bold text.

• Non-Key Attributes. These are actual data-bearing fields, not representing foreign keys to
other tables.

• Cheat Attributes. These are “artificial” system-level fields created solely for the purpose of
enhancing multi-record processing performance. They are non-data-bearing in the sense that

 2

Pyle Taxonomy Schema – DRAFT OVERVIEW

they only contain derived data (i.e., derived from other fields in the parent table or in linked
tables). These fields can be completely eliminated from the model without resulting in any
loss in information content. Users never have editing access to these fields – they are
maintained entirely by software code, and are only exposed to users indirectly to enhance the
performance of query/search/sort activities. For the most part, these fields can be ignored for
all discussions related to information modeling.

Whenever possible, in the diagrams I’ve drawn the lines establishing relationships among
tables in such a way that the lines connect directly to the fields that participate in the relationship.
One consistent exception to this is for recursive (self) relationships, where I generally align the
connection point for the “many” side of the relationship to the appropriate field, but the “one”
side connects to the top of the entity box, with the implication that it joins to the surrogate
Primary Key. In cases where I was unable to align the lines with associated fields, the fields
involved with the relationships are usually evident. For the fields with only a few defined domain
values, those values are usually listed in blue text beneath or adjacent to the corresponding table
box. If such lists include “etc…” at the bottom, then the list is intended to represent example
values only, rather than a predefined set of values. Other comments (e.g. business rules) are
added for various relationships, to enhance clarity.

I’ve deliberately kept this as simple as possible, both for ease of understanding, and
because of my philosophy that discussion should begin with the very basic core essentials of a
data model, and then build upon that core for more elaborate and robust data elements.

 3

Pyle Taxonomy Schema – Draft AGENTS

TAXA
Overview

There is a well-acknowledged subtle but important distinction between a “Taxon Name”
and a “Taxon Concept” (=Circumscription). A “Taxon Name” is made available according to
Codes of nomenclature (ICZN, ICBN, ICNB), and is generally anchored to biological entities via
a primary type specimen. Attributes about that Name (publication date, spelling, authorship, etc.)
are usually unambiguous, and objectively discernable. Taxon Names can be thought of as the
individual “words” comprising the dictionary of the diversity of life.

A “Taxon Concept”, on the other hand, is a much less discretely defined entity, the
creation or establishment of which is not governed by any internationally-accepted codes, and
whose attributes are considerably more ambiguous than those of a taxon name. Whereas a Taxon
Name is generally anchored to the biological world via a single specimen, a Taxon Concept is
intended to circumscribe a large (potentially vast) collection of individual organisms, living,
dead, and yet-to-be-born, all of which share a level of common ancestry (kinship) and
morphological/genetic similarity so as to be regarded as belonging to the same taxon (e.g.,
species). Taxon Concepts can be thought of as the definitions of those Taxon-Name “words”
that comprise the dictionary of the diversity of life.

Unlike the definitions of most words in a conventional dictionary, however, the mapping
of Taxon Concepts to Taxon Names has been far from consistent among practitioners of
taxonomy. Some taxonomists tend to prefer more generalized concepts (=definitions), which
leads to more of the names (=words) being synonymous with other names (=words). Others
prefer more specific concepts (=definitions), thereby maintaining distinctions between different
names (=words). The basic problem is that most published and unpublished documentation about
taxa uses only the names (words), without necessarily including explicit details about how those
names are circumscribed (defined). Thus, the task at hand is to find a way to consistently and
objectively map names (words) to their various respective implied circumscriptions (definitions).

In order to map the names to the circumscriptions, the first step is to apply an
unambiguous “handle” on each, and then build an index to map the name handles to the
circumscription handles. The easiest and most straightforward way to put a “handle” on a taxon
name, is to attach that handle to the Basionym of that name. Although the word “Basionym” is
more frequently used in botanical contexts than in zoological contexts, the basic concept applies
equally to both. The Basionym can be thought of as a pointer to a name’s original description –
the moment when a string of text characters becomes legitimately available for use (in
accordance with the various codes of nomenclature) – and therefore as the “handle” to a name.
After much contemplation, I decided to substitute the word “Protonym” in place of Basionym for
my data model – primarily to avoid confusion and misconceptions that may arise due to the
excess “baggage” of meaning and interpretation of the word “Basionym”. Thus, when I use the
term “Protonym” in this model, I mean it mostly in the same sense as a “Basionym”. In any
case, the Protonym/Basionym traditionally takes the form of:

 “Name OriginalAuthor(s), OriginalYear”.

 4

Pyle Taxonomy Schema – DRAFT AGENTS

As described in detail within the “REFERENCES” section of this document, I define a
“Reference” generally as a “date-stamped Author(s)”, which can also be read as “Author(s),
Year”. Thus, a Protonym can be thought of as:

“Name OriginalReference”

Applying a “handle” to a Taxon Concept is less universally identifiable, and not often as
unambiguous as applying a “handle” on a Name. However, a common way that is used for this
purpose is to cite a name in the context of another Reference, in the form of:

“Name OriginalReference sensu OtherReference”

Or, in the case of the circumscription associated with the Protonym itself, as:

“Name OriginalReference sensu OriginalReference”

Reducing this one step further, the circumscription can be thought of as:

“Protonym sensu Reference”

(where “Reference” is either “OriginalReference” in the case of the circumscription attached to
the original name creation, or “OtherReference” in all other cases).1 Thus, whereas the “handle”
for a Taxon Name can be thought of as the Protonym, the “handle” for a Taxon Concept can be
thought of as the intersection of a Protonym and a Reference.

I have used the term “Assertion” to represent this Protonym(Name)-Reference
intersection, which has previously been diagramed (e.g., in the FGDC Biological Data Working
Group’s “Biological Nomenclature/Taxonomy Meeting Summary”) as follows:

REFERENCE ASSERTION NAME

This diagram implies a “One to Zero-to-Many” relationship between names and
assertions. However, a name cannot exist without at least one Assertion (at minimum, the
Assertion that produced the Protonym for that name); therefore, the relationship between names
and Assertions should be “One to One-to-Many”. Taking this one step further, given that a name
cannot exist without its Protonym, and that a Protonym exists in the context of the Reference that
originally established it, a Protonym can itself be represented as an Assertion. In other words, the
relationship between a “Name” (Protonym) and an Assertion becomes recursive:

Protonym

REFERENCE ASSERTION

1 There is an added layer of complexity in the botanical tradition of conferring special status (and authorship
recognition) of those particular circumscriptions representing first use of new combinations of generic and specific
names, and this is discussed in more detail below. The important point here is that the original Basionym and its
authorship are retained even in the context of subsequent new combinations, such that from a logical perspective,

 5

Pyle Taxonomy Schema – DRAFT AGENTS

Therefore, the conceptual “handle” for the name and the “handle” for the concept are one
and the same, with the former being a special-case subtype of the latter.

It is worth clarifying at this point that, although the “handle” to a taxon concept can be
thought of as an instance of an Assertion; not all Assertions necessarily represent implied Taxon
Concepts. For example, one form of publication is a “Type Catalog”, wherein all type specimens
in a Museum’s collection are listed according to the names that they typify. In such publications,
the authors will list taxon names (generally as unaltered Protonyms in this case), and hence
establish an intersection between a Reference (the type catalog publication itself) and a
Protonym – but without necessarily implying a Taxon Circumscription to go along with that
name (i.e., literally only the “Type-Anchor” is asserted in such cases, without any implications
about the scope of non-type individual kin organisms to be included within the taxon concept
represented by the name). In such cases, an instance of an Assertion exists without an implied
taxon concept. For this reason, an Assertion should be regarded as a “Potential Taxon
[Concept]” (sensu Berendsohn, 1995). In the majority of Name-Reference intersections
(Assertions), however, the author(s) of the Reference had a taxon concept circumscription in
mind when invoking the Taxon Name, even if the scope of that circumscription is not defined (or
even alluded to) within the Reference itself. Thus, in the vast majority of cases, Assertion
instances can be used as a direct “handle” to an implied taxon concept circumscription (which, in
many cases, will be precisely identical to the circumscriptions implied by many other Assertions
for a given Taxon Name). Because my definition of a “Reference” is not restricted to
publications, it can be said that all circumscriptions that map to taxon names can be identified by
an Assertion.

Before describing the “Taxa” data model in detail, I want to outline what I see as
alternative distinct “resolutions” at which circumscription scopes are often defined:

Name-Resolution Circumscription Definitions
This is the coarsest, and most often-used resolution of circumscription scope expression

in published taxonomic references. Such circumscriptions are defined merely by treating taxon
names as either valid, or as junior synonyms of other taxon names. Because taxon names are
anchored to the biological world via type specimens, this method of defining circumscriptions
can be thought of in a sense as Specimen-resolution circumscription definitions, except limiting
it to only those particular specimens that represent primary types of taxon names. To list taxon
name ‘B’ as a junior synonym of taxon name ‘A’, is to assert that “the primary type specimen of
taxon name ‘A’ and the primary type specimen of taxon name ‘B’ share close enough kinship to
each other that they should be regarded as belonging to the same taxon circumscription” (in this
case, with the relevant Code bestowing the name ‘A’ with nomenclatural priority over the name
‘B’). Conversely, to list taxon name ‘B’ as valid and distinct from taxon name ‘A’, is to assert
that “the primary type specimen of taxon name ‘A’ and the primary type specimen of taxon name
‘B’ are sufficiently distant in kinship to each other that they should be regarded as belonging to
different taxon circumscriptions”. In this way, the full scope of the implied circumscription is
represented by the set of Assertions within a Reference that include a name that is treated as
valid, plus all assertions of names that are treated as junior synonyms of that valid name (the
“handle” on the assertion being maintained as the one represented by the valid name).

circumscriptions can ultimately be represented as “Basionym sensu Reference”. See the elaborated discussion in the
“Limitations” section below.

 6

Pyle Taxonomy Schema – DRAFT AGENTS

The primary weaknesses of this form of circumscription definitions are as follows:

1) When a reference does not treat all relevant names that are available at the time the
Reference is established (e.g., when not all potentially valid taxa are treated, or not all
potentially relevant synonyms are assigned to names that are treated as valid), then
the circumscription definitions within the context of the reference are incomplete.

2) Even when a reference does treat all relevant names available at the time the
Reference is established, the reference may be later rendered incomplete by
subsequent descriptions of new relevant names (either by splitting existing
circumscriptions, or discovering new populations warranting new taxon names).

3) Using only name-level circumscription definitions (i.e., without elaborating the
character-based criteria used to delineate different circumscriptions), greatly inhibits
the ability to secondarily assign individual non-type specimens to these
circumscriptions.

These weaknesses notwithstanding, name resolution circumscription definitions represent
the bulk of documented taxonomic information, and therefore serve as an ideal “core”
information content base around which the foundation of a data model should be built.

Specimen-Resolution Circumscription Definitions
The most fundamental (and finest) resolution at which circumscriptions are mapped is via

individual specimens (beyond the limited scope of primary type specimens). The source
Reference for corresponding Assertions can either be in the form of a publication (as when a
published reference lists Museum specimen catalog numbers under a particular taxon name), or
in the form of an unpublished “Determination”-type reference (i.e., identification labels on the
actual museum specimens themselves).

Other Circumscription Definition Resolutions
It could be argued that “Character-Resolution Circumscription Definitions” represent a

another resolution at which circumscriptions can be defined. For reasons not elaborated herein, I
see this as a fundamentally different approach to mapping the scope of taxon circumscriptions,
because it transcends the individual organism (considered to be the basic unit of a taxon). While
this question is certainly ripe for discussion, it goes beyond the intended scope of this document.
Also, circumscriptions are sometimes defined in terms of populations of organisms. This
resolution of circumscription definition represents cases where a reference ascribes specific
populations to taxon names, thereby extending the resolution of circumscription boundary
delineation beyond the relatively course type-specimen anchor points, but not as precise as
specimen-resolution definitions. This kind of circumscription definition usually takes the form
of biogeographic treatments (i.e., maping taxon names directly to geographic regions, bypassing
the more fundamental connection between names and locations via specimens). Although I have
given some thought to modeling these sorts of circumscriptions, those thoughts have not
extended much beyond preliminary ideas, and I therefore have not included any descriptions
herein.

The core “Taxa” data model represented here is intended to directly document “Name-
Resolution” circumscription definitions, while also providing a tangible “handle” to a

 7

Pyle Taxonomy Schema – DRAFT AGENTS

circumscription (i.e., an Assertion instance) that can be more precisely defined at higher
resolution (e.g., specimen resolution) via additional “layers” of data entities.

tbl_Assertion
The central “anchor” entity of the taxon portion of this data model is the Assertion. As

previously stated, an Assertion is defined as the intersection of a Protonym and a Reference, as
indicated by the Foreign Keys, ProtonymID and ReferenceID. Because Protonyms themselves
represent Assertions (sensu the original authors of the Protonym), it would be possible to
represent the linkage of ProtonymID to AssertionID via a direct recursive link. However,
because certain attributes apply only to Protonyms and not all Assertions (e.g., nomenclatural
attributes such as Availability in the case of names governed by Codes, and “Type Species” and
Gender in the case of generic-level names – describe in more detail along with other Protonym
attributes below), and also for reasons of enforcing business rules and improving performance of
certain query operations, I have defined the table tbl_Protonym as a subtype of tbl_Assertion.
The recursive linkage between any particular Assertion instance and its associated Protonym is
made via the tbl_Protonym subtype; first from the ProtonymID Foreign Key field of
tbl_Assertion to the ProtonymID Primary Key of the subtype tbl_Protonym, and then back to
tbl_Assertion table via the One-to-One subtype link to AssertionID. The domain of Assertion
instances that are to be represented by instances in tbl_Protonym are, by definition, those
instances of tbl_Assertion where AssertionID=ProtonymID.

The ReferenceID Foreign Key of tbl_Assertion is a straightforward linkage back to the
Reference in which the assertion is made. Special care must be taken when establishing this link
for Assertions that represent Protonyms, because the authorship of the Protonym is derived
directly from the authorship of the corresponding Reference. In cases where taxon authorship
does not exactly match original Reference authorship, then a new Reference of type “Sub-
Reference” must be created to represent only that portion of the parent Reference constituting the
description of the relevant Protonym, so that correct Protonym authorship (including cases of
“ex” authors) can be ascribed to the Protonym via the Sub-Reference authors.

In the vast majority of cases, the two Foreign Keys ProtonymID and ReferenceID would
(by themselves) uniquely identify every circumscription Assertion. However, in the special case
of Nominotypical taxon circumscriptions (e.g., the subfamily Chaetodontinae within the family
Chaetodontidae; or the subgenus Chaetodon (Chaetodon), or the subspecies Chaetodon
unimaculatus unimaculatus) represent cases where a single Protonym can be used within a single
Reference as representing two distinct taxon concept circumscriptions. For this reason, the
TaxonRankID Foreign Key, which identifies the exact taxonomic rank at which the Protonym is
used within the Reference, must also be included among the uniquely-identifying attributes of a
particular Assertion instance.

The TaxonRankID Foreign Key establishes a link to the tbl_TaxonRank table. Although
the final field structure of this table has not been completely identified as yet in my model, its
primary element is the RankName (e.g., “Kingdom”, “Family”, “Species”, “Variety”, etc.)2. The

2 Unfortunately, the RankNames are not universally established for all of biology. The most persistent inconsistency
is the RankName “Phylum” in zoological nomenclature corresponding to the RankName “Division” in botanical
nomenclature (“Division” is often used for a different rank – between Class and Order – within Zoological
nomenclature). There are several solutions to this inconsistency, but I haven’t yet decided which solution I prefer –
which is why the final field structure is not yet completely identified.

 8

Pyle Taxonomy Schema – DRAFT AGENTS

remaining fields are not strictly core attributes of each Taxon Rank, but are used by the
application for formatting purposes (Abbreviation is a 3-character abbreviation of each rank used
as a delimiter within the CheatHierarchy field of tbl_Protonym, and Prefix and Suffix are used
to format the CheatTaxonName field of tbl_Assertion). It is worth noting that the Primary Key
of tbl_TaxonRank (TaxonRankID) is information-bearing in that the numeric values are
assigned in sequence from the highest taxonomic rank (=lowest ID number value), to lowest
taxonomic rank (=highest ID number value). To maintain consistency in non-information-
bearing Primary Keys of other entities in this schema, it might be appropriate to create a new
attribute for tbl_TaxonRank (e.g., Sequence) to store rank sequence information.

Although TaxonRankID technically serves as a component of the unique identifier for
each Assertion record, it only serves a function in this capacity for those relatively few cases
involving Nominotypical taxa. In a broader sense, I regard TaxonRankID as one of the four
“basic elements” that make up the essence of an Assertion. It is necessary even outside the
context of Nominotypical taxa because the same taxon name may be used to represent different
taxonomic ranks (e.g., as a family or a subfamily; as a genus or a subgenus; as a species, a
subspecies, a variety, or a form; etc.). Thus, to adequately describe how a taxon name was used
within the context of a particular Reference, it is necessary to document exactly what rank the
name was used to represent.

The second of four basic elements of an Assertion is its “Validity” (i.e., whether or not
the name was treated by the Reference as a valid taxon, or as a junior synonym of another taxon).
This element is documented via the ValidAssertionID Foreign Key, which recursively links back
to the same or another instance of the tbl_Assertion table. All Assertion instances must indicate
a value for ValidAssertionID. Cases where the Reference treated the name as a valid taxon are
indicated by ValidAssertionID=AssertionID (almost by definition, this includes all Assertions
that are included in the tbl_Protonym subtype) . In cases where the Reference treated the name
as a junior synonym of another name, then ValidAssertionID≠AssertionID for the given instance,
and ValidAssertionID instead points to the Assertion that represents the indicated senior
synonym of the original instance.

At the moment, I am imposing the restriction that when ValidAssertionID≠AssertionID,
the ValidAssertionID must point to a different Assertion instance based on the exact same
ReferenceID as the original Assertion instance. In other words, inter-Assertion linkages via this
Foreign Key must be established within a single Reference. While it may be tempting to
establish inter-Reference linkages with this structure (e.g., when a Reference explicitly bases its
concept of a taxon name on that of another Reference), for a variety of reasons I think such inter-
Reference Assertion mapping is best done as a second “layer”, via tables external to
tbl_Assertion. A logical consequence of this restriction (no inter-Reference linkages from
ValidAssertionID) is that the domain of Assertions available for entry in ValidAssertionID is
restricted to those instances where ValidAssertionID=AssertionID. We can safely assume that a
corresponding “valid” name Assertion will exist within the same reference that declares another
name as being a “junior synonym” of that valid name (i.e., if a Reference asserts that ‘B’ is a
junior synonym of ‘A’, then the same reference also asserts that ‘A’ represents a valid taxon).

An important concept to recognize here is that ValidAssertionID has context only for the
terminal epithet name of the indicated Protonym. In other words, a Reference can treat a
species-level Protonym as “valid” (ValidAssertionID=AssertionID), but still regard the name to
belong to different genus (i.e., different combination) from the original treatment of the

 9

Pyle Taxonomy Schema – DRAFT AGENTS

Protonym. The parent-taxon context of a name within an Assertion is documented separately
from its “validity”, and represents the third basic element of an Assertion: the
ParentAssertionID.

The ParentAssertionID links an Assertion instance to another Assertion instance that
represents the parent taxon in which the first taxon is placed (according to the Reference). For
example, if a Reference places species ‘b’ within genus ‘A’, then the ParentAssertionID for the
Assertion of species ‘b’ will point to the Assertion of genus ‘A’. As is the case for
ValidAssertionID, I currently restrict this relationship to be within a single Reference (if a
Reference explicitly places one taxon within a hierarchical parent taxon, then by implication the
same Reference makes an Assertion about that parent taxon). As indicated in the diagram,
ParentAssertionID can contain a null value. There are two reasons for this. The first is that for
taxon names above the rank of species, References do not always specify what parent taxon a
given taxon name is asserted to fall with (indeed, few taxonomic references explicitly state full
hierarchical context all the way up to Kingdom, so at some point most references cite a taxon
name without placing it within a parent taxon). The second reason is that, for Assertions made
about non-valid taxon names (ValidAssertionID≠AssertionID), there technically is no asserted
parent taxon. Although it may be assumed that the non-valid name would inherit the parent
taxon of its corresponding senior synonym (the name that ValidAssertionID points to), I prefer
instead to derive this inheritance via the ValidAssertionID link, and therefore I have imposed the
restriction that for all cases where ValidAssertionID≠AssertionID, the corresponding value of
ParentAssertionID is null. The domain of available values for ParentAssertionID is restricted to
those Assertions of a higher TaxonRank than the current Assertion instance, and also (like the
case for ValidAssertionID) is limited to Assertions where ValidAssertionID=AssertionID.

The fourth (and final) “basic element” of an Assertion is the Epithet. This text field
stores the exact character string that the Reference used when citing the associated Taxon Name.
The main purpose of this field is to document the exact spelling (including hyphens, numbers,
and other symbols, where applicable) of the name within the Reference. Only the “terminal”
epithet is included for binomials, trinomials, and other polynomials (including subgenera). In the
special case of hybrids, the complete hybrid formula is entered, exactly as spelled and punctuated
in the Reference.

One additional attribute that could conceivably be regarded as the “fifth” basic element of
an Assertion is Sequence. The purpose of this field is to record the actual sequence in which a
series of taxon names were listed, within the context of a single parent taxon. This information
is sometimes useful to record, because it may represent an assertion about the phylogenetic
context of a taxon among related taxa. Because the meaning of such sequence information is not
standardized and its application within references is inconsistent, however, this attribute does not
really constitute a “basic element” of an Assertion.

Another important attribute of an Assertion is Pages. In the current implementation of the
model, this field is simply a text field to allow entering whatever information is necessary to
designate where, within a larger Reference, an Assertion can be located. Future implementations
of the model might break this information out into a separate table (e.g. linked to individual-page
PDF files).

The Reliability index field is intended to be a semi-objective guide to how reliable an
interpretation may be. Although some degree of subjectivity is inevitable in assigning this value,

 10

Pyle Taxonomy Schema – DRAFT AGENTS

I have defined the domain to be as objectively-discernable as possible, while still providing some
meaningful function. A value of 5 represents the highest reliability, and is limited to only those
References constituting the original description of a taxon name, or a first “new combination”
Assertion. All Assertions representing Protonyms would be assigned this value. A value of 4
corresponds to other taxonomic revisionary work that explicitly treats the associated taxon within
the context of the revision. A value of 3 indicates that the Reference making the Assertion did so
within a taxonomic context, but not necessarily an exhaustive revisionary context. A value of 2
indicates that the Reference was scientific in nature, thought not specifically a taxonomic work
(e.g., an ethological or ecological article). A value of 1 is used for popular literature and other
non-scientific references. This same scale can be applied (more or less) to unpublished
assertions (e.g. specimen determinations), based on the nature of circumstances and
qualifications of the Agent(s) conducting the identifications. A value of 0 (default) indicates that
the nature of the reliability has not been reliably determined.

The remaining three data-bearing attributes of are Assertion are provisional, and may be
rendered redundant depending on how many additional Subtypes of Assertion are created. All
three fields (IsNewCombination, IsFirstRevision, and IsTypeCatalog) are boolean values with
self-evident meaning, intended to flag certain special-case Assertions which have important
taxonomic or nomenclatural meaning. Any of these could be expanded to a full non-exclusive
subtypes, if additional attributes relevant to each category are deemed worthy of recording.

[CheatTaxonName is formatted as the complete name (identical to Epithet for ranks of genus and
higher, or complete binomial, trinomial, or other polynomial for ranks lower than genus). The
value for lower-than-genus ranks is derived from recursive concatination of Epithets up to the
level of genus, and the value for hybrids represents the complete hybrid formula as derived from
the linkages established in the tbl_HybridAssertion table (see below) – which may differ
somewhat from the hybrid formula as actually written in the Reference (i.e., the contents of
Epithet, in the case of hybrids). CheatFullTaxonName is simply the value of CheatTaxonName,
expanded to include all appropriately-formatted authorships. CheatNominotypical is simply a
boolean field used to flag those Assertions that represent Nominotypical names (i.e., the
ProtonymID values equals the ProtonymID value of the Assertion indicated by the
ParentAssertionID Foreign Key). CheatStatus is a standardized “natural language” statement
representing the combination of the four basic Assertion elements (e.g., “Valid as originally
described.”, “Junior Synonym of {OtherTaxonName}”, “Valid {TaxonRank} within the
{ParentTaxonName}”, etc.]

tbl_Protonym
As mentioned earlier, tbl_Protonym represents a subtype of tbl_Assertion, indicating

those special-case Assertion instances that constitute original descriptions of taxon names (i.e.,
Protonyms). The recursive relationship between this table and tbl_Assertion has been described
above, and will not be repeated here. The other attributes of tbl_Protonym, described here, are
data elements specifically associated with Protonyms (and not specifically with non-Protonym
Assertions).

The Foreign Key TypeProtonymID is a recursive link, and is used primarily for names at
the genus-group rank, to indicate which Species-group Protonym was designated as the “Type
Species” for the genus-group name. I’ve given this field the name TypeProtonymID because my
current thinking holds that a Type-Species to a Genus Name is a species Name, rather than a

 11

Pyle Taxonomy Schema – DRAFT AGENTS

species concept (generic typification is usually thought of as a nomenclatural assignment, rather
than a circumscription statement). However, if a reference designates a new genus name ‘A’ and
assigns a type species ‘b’ (which itself is not also described within the same reference), then
there is an Assertion instance for species ‘b’ within this same Reference. This species ‘b’
Assertion instance (which, as already stated, is not a Protonym Assertion), could instead be used
as the “Type Species” for the new genus ‘A’, in which case the type is implied to be the
circumscription of ‘b’, rather than simply the name ‘b’. In this case, the Foreign Key would be
renamed as TypeAssertionID, and would link to tbl_Assertion (instead of recursively back to
tbl_Protonym), and the rule would be imposed that the ReferenceID values for the
corresponding instances of ProtonymID and TypeAssertionID in tbl_Assertion must be the same
value (for a given instance of tbl_Protonym with a populated TypeAssertionID. The important
question is whether a Type species of a Genus name (or Type genus of a family name) should be
thought of as a name, or as a circumscription.

The Foreign Key WordTypeID links to the same tbl_WordType that was described
earlier under the tbl_Glossary heading of the “References” section of this document. The
purpose for allowing this link is to specify what word form the epithet of a Protonym takes (e.g.,
“Noun (apposition)”, “Adjective”, etc.), which can be useful for determining proper name
spelling (e.g., when placed in a genus of a different gender).

The Availability field indicates the nomenclatural availability status of a name, as per the
relevant Code of nomenclature. Values (shown in blue in the diagram) are general
representations of various availability statuses, including several indicators of objective
unavailability. This field represents a simple indication, which could be replaced by a more
robust set of entities for tracking objective synonymy of certain names.

The Gender field mirrors the field of the same name in tbl_Person of the “Agents”
section, and is used to indicate the gender of genus-group protonyms.

NomenCode indicates under which particular Code of Nomenclature a particular
Protonym falls. In cases of names at ranks higher than those governed by the relevant codes, the
value indicates which Code the child taxa fall under. This field is important for determing
specific formatting rules of authorships, etc.

[CheatFullProtonym is used to store a standardized formatted name, plus authorship. The format
is generally as “Epithet, OriginalParent Authorship” (e.g., “speciesname, Genusname
AuthorName(s)”. CheatAcceptedAssertionID is derived from entities and rules not shown within
this section, which determine which assertion the user of the database system has decided to
follow as representing the “correct” status of each name. CheatHierarchy is a specially-formated
long text string that includes the full-context taxonomic hierarchy for each Protonym, as
determind by the series of values of CheatAcceptedAssertionID for each name at each rank.
CheatGlobalSequence is intended to be a specially-formatted text string that can be used to sort a
block of taxon names into appropriate phylogenetic sequence.]

tbl_HybridAssertion
This table represents another Subtype of tbl_Assertion (non-exclusive with

tbl_Protonym), that is populated with Assertions that constitute hybrid taxa. At present, the
only purpose of this subtype table is to record individual Parent Taxon Assertions for a given
hybrid Assertion. As with ValidAssertionID and ParentAssertionID Foreign Keys in the

 12

Pyle Taxonomy Schema – DRAFT AGENTS

tbl_Assertion table, all three values in a given instance of tbl_HybridAssertion
(HybridAssertionID, HybridParent1ID, and HybridParent2ID) must point to three different
Assertion records, all of which share the same ReferenceID source. By convention,
HybridParent1ID stores the alphabetically-first member of a hybrid, and HybridParent2ID
stores the alphabetically-second member. This subtype must be non-exclusive with
tbl_Protonym, because they overlap with each other in the case of Nothospecies.

Limitations
• Because I have intentionally restricted this “Taxa” section of the data model to reflect only

the “core” data elements, it does not, by itself, allow for many of data management features
commonly associated with taxon concepts (e.g., mapping equivalencies of concepts or
concept sets; anchoring concepts to specimens, etc.). All of these features are relatively easy
to implement on top of this core data model.

• Although not a ‘limitation’ per se, it is worth recognizing thconnection between the word
“Protonym” and the word “Basionym”. Although “Basionym” is used primarily in botanical
contexts, it could easily be extended to represent the same meaning in Zoological contexts.
However, “Basionym”, strictly defined, includes the genus-species[-subspecific] combination
of names (binomial, trinomial); but only the terminal epithet is implied by the “Protonym”.
Moreover, whereas the word “Basionym” typically refers to the actual name only,
“Protonym” is here extended to imply the authorship (or more directly, the Reference
association) that was involved with the original establishment of the Basionym. Finally, the
term “Basionym” is usually used only in the context of lower-level taxonomic ranks (genus,
species, subspecies, etc.), but “Protonym” is here extended to apply to all taxonomic ranks.
For these (and other) reasons, I have chosen to avoid using the word “Basionym” in this
model, and instead substitute the word “Protonym”. It may, however, later be deemed
appropriate to use the word “Basionym” for this role; in part to avoid inventing new term,
and in part because its primary use in this model (i.e., recovering the original full-context
basionym name and associated authorship) is consistent with the more restrictive,
conventional definition of the word. According to the website available at:

http://rec-puzzles.org/new/sol.pl/language/english/spelling/nym

“Basonym” is defined as:

“The earliest validly published name of a taxon, being in the case of a
binomial or trinomial the source of the valid specific or subspecific
epithet when the taxon is transferred to a new combination and in
technical usage always accompanied by the name of the original
author. (Crataegus spicata Lamark:Amelanchier spicata) [Source:
Merriam-Webster's Third New International Dictionary]”

Following this definition, the use herein would seem appropriate (although I
would prefer the spelling to include the “i”, to avoid additional confusion).
However, to avoid confounding this issue through preconceptions about what
a “Basionym” should mean within taxonomy, I’ve decided that a better
approach here would be to chose a different term without all that “baggage”.

Alternative terms that might be more appropriate to use in place of “Basionym” include
“Protonym” and “ProtoAssertion”. The former is defined as:

 13

http://rec-puzzles.org/new/sol.pl/language/english/spelling/nym

Pyle Taxonomy Schema – DRAFT AGENTS

“The first person or thing of the name; that from which
another is named [Source: Oxford English Dictionary]”

Although this term is still bound by the “nym” suffix to apply strictly to a “Name” (rather
than a Name-Reference intersection, as would be a subtype of tbl_Assertion), it seems to be
a more appropriate term than “Basionym” in this context (i.e., without the baggage of
preconceived meanings). It’s implied meaning as a “name” per se is not entirely
inappropriate, because even if it represents a subtype of an Assertion, it is intended to
represent the original name component of that Assertion. An alternative solution would be to
use the more explicit term “ProtoAssertion” as this would emphasize the Subtype aspect of
the entity.

All things considered, I still prefer to use the word “Protonym” here. I explicitly intend for
the entity it represents to be the de facto source of “Basionym” (sensu conventional usage)
data.

• Another problem with the word “Basionym” is that it implies that a name has achieved
legitimacy within the relevant nomenclatural Code. Strictly speaking, this would appear to
restrict this model to use only with names after they have been published in accordance with
relevant codes (i.e., only after they have a legitimate Basionym to point to). However, there
are many applications that need to cite a Taxon Concept before it has received a Code-
compliant name (Basionym). A common example of this would be specimens identified as
belonging to as-yet un-named species. The use of the term “Protonym” avoids this problem.

 14

Pyle Taxonomy Schema – DRAFT AGENTS

 15

tbl_Assertion

AssertionID P lng
ProtonymID F lng
ReferenceID F lng
TaxonRankID F byt

ValidAssertionID F lng
ParentAssertionID F lng
ReliabilityID byt

Epithet txt
Sequence int
Pages txt
IsNewCombination bool
IsFirstRevision bool
IsTypeCatalog bool

CheatTaxonName txt
CheatFullTaxonName txt
CheatNominotypical bool
CheatStatus txt

Foreign Keys

Non-Key Attributes

Cheat Attributes

Unique Keys

tbl_Protonym

ProtonymID P lng

TypeProtonymID F lng
WordTypeID F byt

Availability byt
Gender byt
NomenCode byt

CheatFullProtonym txt
CheatAcceptedAssertionID lng
CheatHierarchy mem
CheatGlobalSequence txt

Foreign Keys

Non-Key Attributes

Cheat Attributes

Unique Keys

tbl_Reference

ReferenceID P lng
[etc…]

Unique Keys

Subtype

NomenCode:
0=Unspecified
1=ICBN
2=ICZN
3=ICNB

Availability:
0=Uncertain
1=Available
2=Not Available
3=1°Homonym
4=2°Homonym
5=Nomen Nudum
6=Hybrid
etc…?

Gender:
0=Unspecified
1=Masculine
2=Feminine

tbl_TaxonRank

TaxonRankID P lng
RankName txt

Abbreviation txt
Prefix txt
Suffix txt

Non-Key Attributes

Unique Keys

Reliability:
0=Uncertain
1=Non-Scientific
2=Scientific
3=Taxonomic
4=Revision
5=Original/New Comb.

If ValidAssertionID≠AssertionID for a given
instance of tbl_Assertion, then ValidAssertionID
must point to an instance of tbl_Assertion with
the same value of ReferenceID as the instance
from which the link is made.

tbl_HybridAssertion

HybridAssertionID P lng

HybridParent1ID F lng
HybridParent2ID F byt

Foreign Keys

Unique Keys

Subtype

tbl_Reliability

ReliabilityID P byt
R

D

Unique Keys

tbl_WordType

WordTypeID P byt
WordType txt

WordType:
Noun (genitive)
Noun (apposition)
Adjective
Verb
Acronym
etc…

Unique Keys
eliability txt

escription txt
Non-Key Attributes

Pyle Taxonomy Schema – DRAFT AGENTS

AGENTS
Overview

The term “Agent” (synonymous with “Party”) applies to an individual human (Person),
or an organized group of humans (Organization). AgentAssociations may be established
between any combination of a Person, and/or an Organization, and/or an Address. A
minimum of two of these three values must be included for any single instance of
AgentAssociation (i.e., no “association” can be made within only one of these three). For each
AgentAssociation, there may be zero to many EContacts (e.g., telephone and fax numbers,
telex, email addresses, websites, etc.).

tbl_Agent
Every Agent instance is assigned a ValidAgentID corresponding to the particular “alias”

of the agent that is currently regarded as valid. If ValidAgentID=AgentID for a particular
instance, then that specific instance represents the “most correct” variation of that Agent. If
ValidAgentID≠AgentID, then the current Agent instance is regarded as a “junior alias” of the
record indicated by the value of ValidAgentID. In all cases, the value in ValidAgentID must be
drawn from the set of “valid” Agents (i.e., where ValidAgentID=AgentID). The ValidAgentID
field may not contain a Null value. The ValidAgentID system is primarily intended to map
people or organizations who have used different names over the course of their lives (e.g.,
maiden name and married name, organization renaming, etc.), however it is also used to record
different variations of the same name for a single Agent (e.g., when a person serves as the role of
Author to different publications using different sets of given-name initials, or different styles of
the same multi-part last name). It is important to clarify that instances within this table do not
necessarily represent a single “Agent” (Person or Organization), but actually represent various
NAMES that have been applied to individual Agents. Unique Agents can be quickly identified as
those instances where ValidAgentID=AgentID. This logic cascades to apply to Organization and
Person subtypes.

Every instance of Agent is assigned an AgentTypeID value that corresponds to an existing
instance of the tbl_AgentType table, indicating which Subtype the Agent represents. This data
model currently allows only two AgentType values – Person and Organization – but additional
AgentType values may be defined in the future (e.g., “Team”, which would represent a set of
multiple Agents who do not collectively constitute an “Organization”).

An agent is flagged as Ambiguous if the instance does not represent a specific, identified
individual Person or Organization, but rather a generic Person or Organization (e.g., “local
fisherman”, “fish market”, etc.).

Each Agent has a BirthDate (or the founding date of an organization), and a DeathDate
(or the termination date of an organization). These values are useful for distinguishing different
Agents with similar or identical names.

[CheatFullAgentName is used store a text string representing a consistently formatted name of
the Agent, for faster display in output queries.]

 16

Pyle Taxonomy Schema – DRAFT AGENTS

tbl_Organization
Organizations represent one of the defined subtypes of Agents. Conceptually, an

Organization is a place-holder for the collection of individual persons who form the organization
(i.e., an “organization of people”). Informal sets of multiple individual persons (e.g., a set of
authors for a particular reference, or a set of collectors for a particular specimen) generally do
not constitute an “Organization”; rather, organizations exist as a collection of people
independently of who those particular people are at any given point in time.

Organizations can be nested hierarchically, such that any Organization might be a subset
of a “Parent” organization, as indicated by ParentOrganizationID. Because in this
implementation of the model, no form of systematic “Rank” is applied to individual
organizations (e.g., “Department”, “Division”, “Working Group”, etc.), code must be used to
enforce the business rule that no organization can be its own parent, and no chain of multiple
Organization→ParentOrganization links can be circular.

Organizations often have an Acronym and an OrganizationName, which are the text-
strings used to represent the organization. An organization can be semi-objectively classified
according to its GeoScope, using pre-defined values ranging from “Local” to “International”
(allowing also for “Unspecified”).

[CheatFullOrganizationName is used differently from CheatFullAgentName; whereas the
latter provides the full name of the specific organization; the former is used to contain its full
parental context. Because “parentage” is not tracked for Person-type Agents, this information is
stored in this table.]

tbl_Person
The other defined subtype of Agent is Person. As explained earlier, each unique Person

may be represented by multiple instances in this entity – one for each different “alias” or name
variation. However, the unique individual Persons can be easily identified by filtering on cases
where PersonID is equal to the corresponding ValidAgentID in tbl_Agent (this all applies
equally to organizations).

The core fields of this table primarily involve different elements of a Person’s name:
Prefix, GivenName, FamilyName, and Suffix. Prefix and Suffix are straightforward, with
examples given in the diagram. GivenName includes all elements of a person’s given name, with
each element separated by a space. FamilyName includes all elements of a person’s family name
(i.e., including “de”, “van der”, etc.). PrimaryGivenName is a byte-level integer representing
which sequential name element of a multi-part given name is used as the primary given name.
For example, for the name “John Edward Smith”, the GivenName would be entered as “John
Edward” (with a space delimiting the two given names). A PrimaryGivenName value of 1
would indicate that the name is formatted typically as “John E. Smith”, and a
PrimaryGivenName value of 2 would indicate “J. Edward Smith”. A PrimaryGivenName value
of 0 indicates an unspecified primary given name.

Gender indicates simply whether the person is Female (2), Male (1), or not known (0).

tbl_AgentAssociation
The primary function of this table is to track associations between Organizations and

individual Persons. In most cases, this table simply serves to establish a many-to-many

 17

Pyle Taxonomy Schema – DRAFT AGENTS

relationship between people and organizations; but the function is more complex than this,
because this table also serves the purpose of connecting an Association with an instance of the
tbl_Address table. Consequently, either of the Foreign Key fields PersonID or OrganizationID
(but not both) can contain a null value, but only if AddressID for that instance is non-null. Such
an instance would allow for linking an Address directly to either an Organization or a Person,
without the need to establish an Association between an Organization and a Person (e.g., a
person’s home address, or an organization’s general address). If both PersonID and
OrganizationID are non-null for a given AgentAssociation, then AddressID may be null for that
instance (but certainly doesn’t have to be).

The AgentRole for each instance of tbl_AgentAssociation is intended to represent the
role played by the Person at the associated Organization. Examples are given in blue text in the
diagram.

Each AgentAssociation has a StartDate and an EndDate to establish the window of time
in which the association existed.

In principle, no instance should exist in the tbl_Address entity, unless it exists in at least
one instance of AgentAssociation. Thus, the former is a “Dependent” entity of sorts, even though
it serves on the “one” side of a one-to-many relationship. The fields of tbl_Address do not need
elaboration, except perhaps for the FmtAddress field, which contains a fully-formatted mailing
address to be entered or modified by the user. Usually, this field is automatically generated –
derived from the other fields in this table – but it is not treated as a “Cheat” field because the user
is allowed to over-ride the auto-formatting, to meet some particular address formatting situation.
Ultimately, this is an optional, application-defined field, rather than a core field.

Whereas only one Address can be linked to any particular AgentAssociation, there can be
many instances of the tbl_EContact table linked to a given AgentAssociation. The concept of
EContacts represents any sort of electronic contact number or text string, such as various
telephone numbers, email addresses, web URLs, etc. The type of EContact is indicated by the
EContactType field, examples of which are given in blue text in the diagram.

Limitations
• Associations cannot be made directly between one Person and another Person, or between

one Organization and another Organization, except for the special case of “Aliases” (by way
of the ValidAgentID recursive foreign key in tbl_Agent), and of an Organization linking
directly to a Parent Organization. Such associations (e.g., between husband and wife, or
between two organizations joined by an MOU or other agreement) are considered to be
outside the scope of this data model. Additional tables could easily be appended to this model
to track such associations. To accommodate such relationships within the current context,
one could re-define the OrganizationID and PersonID Foreign Keys of tbl_AgentAssociation
to be AgentID and AssociatedAgentID (without restriction of which Subtype each is drawn
from), but there would need to be structure to accommodate tracking directionality of such a
relationship (perhaps in place of AgentRole).

• EContacts can only be linked directly to a Person or Organization (without the context of the
other), if an AddressID has been provided for that Person or Organization. This limitation
stems from the fact that tbl_EContact links to an instance of tbl_AgentAssociation, and the
latter can exist only if a minimum of two of the three attributes PersonID, OrganizationID,

 18

Pyle Taxonomy Schema – DRAFT AGENTS

and AddressID have been populated. Relaxing this requirement of having a minimum two
out of three populated foreign keys in AgentAssociation, to the more liberal rule of either
PersonID or OrganizationID being populated (regardless of AddressID), would remove this
limitation.

• Although additional AgentTypes can be defined (e.g., “Team”), they would need to be
established in such a way that links to tbl_AgentAssociation are maintained logically. For
example, if the third AgentType “Team” were established, then the OrganizationID foreign
key of tbl_AgentAssociation might be redefined as “TeamOrganizationID” , indicating that
it may be populated either with an OrganizationID or a TeamID.

 19

Pyle Taxonomy Schema – DRAFT AGENTS

 20

ParentOrganizationID cannot
equal OrganizationID for a
single instance, nor can a
circular relation be established
for multiple instances.

If AgentID=ValidAgentID then Agent is Valid,
Else Agent is a junior alias of ValidAgentID.
Available values for ValidAgentID are limited to
those cases where AgentID=ValidAgentID.tbl_Agent

AgentID P lng

ValidAgentID F lng
AgentTypeID F byt

Ambiguous bool
BirthDate date
DeathDate date

CheatFullAgentName txt

tbl_AgentType

AgentTypeID P byt
AgentType txt

Unique Keys

AgentType:
Person
Organization

Unique Keys

Cheat Attributes

Non-Key Attributes

Foreign Keys

Subtype

A minimum of two non-null values must be among
the three fields PersonID, OrganizationID and
AddressID for each instance of AgentAssociation.

tbl_Organization

OrganizationID P lng

ParentOrganizationID F lng

Acronym txt
OrganizationName txt
GeoScope byt

CheatFullOrganizationName txt

Foreign Keys

Non-Key Attributes

Cheat Attributes

Unique Keys
PersonID P lng

Prefix txt
GivenName txt
FamilyName txt
Suffix txt
PrimaryGivenName byt
Gender byt

Non-Key Attributes

Unique Keys

GeoScope:
0=Unspecified
1=Local
2=Regional
3=National
4=International

AgentRole
Home
Emplo
Advisor
Dir
Pre

AddressID P lng

Street txt
MailStop txt
City txt
State txt
Zip txt
Country txt
FmtAddress mem

tbl_Address
Unique Keys

Non-Key Attributes

:

yee

ector
sident

etc…

EContactType:
Phone
Fax
Pager
eMail
URL
Telex
etc…

tbl_EContact

EContactID P lng

AgentAssociationID F lng

EContact txt
EContactType txt

tbl_AgentAssociation

AgentAssociationID P lng

PersonID F lng
OrganizationID F lng
AddressID F lng

AgentRole txt
StartDate date
EndDate date

Foreign Keys

Unique Keys

Non-Key Attributes

Unique Keys

Non-Key Attributes

Foreign Keys

Prefix:
Mr.
Mrs.
Ms.
Dr.
Prof.
Sir
etc…

Gender:

0=Unspecified
1=Male
2=Female

Suffix:
Jr.
Sr.
II
III
etc…

tbl_Person

REFERENCES
Overview

Whereas most people think of a “Reference” primarily in the context of a publication, I
define the concept more broadly, in a way best described as a “Date-stamped instance of
Agent(s)”. All References must have as their source one or more Agents (ReferenceAuthors),
and each instance of a Reference represents a statement by those Agents at a particular moment
in time. Another way of expressing this is that a Reference may be created whenever any set of
one or more Agents establishes or asserts some informational content (statement) at a certain
point in time. All publications fall within this definition of “Reference”, because all publications
are drafted at the hand of one or more Agents (even if the Agent can only be identified as
“Anonymous” or “Unspecified”), and are published at a particular point in time. Besides
publications, however, there are other ways in which a set of one or more Agents may assert
statements at a certain point in time. Familiar examples of unpublished References would include
correspondence and other forms of personal communications (usually documented in the form of
a letter, memo, or other printed documentation), and specimen determinations (usually
documented in the form of specimen labels or identification tags). All other attributes of
Reference deal mainly with elements of information that identify the documentation and citation
details about the Reference voucher, indexing by RefernceKeywords, and cross-referencing
References via the ReferenceBibliography.

tbl_Reference
The basic structure of tbl_Reference emulates the apparent structure of EndNote®

bibliographic software. This structure was chosen to allow relatively easy transfer of Reference
data between EndNote® and this database application. Several aspects of this model expand
upon the basic EndNote® structure, primarily with regard to breaking certain data elements out
into separate linked tables, but also in the form of extended data recording capabilities.

References may contain other references in hierarchical fashion. A familiar example
would be book compiled by one set of Agents (i.e., editors), which contains chapters authored by
different sets of Agents. For the purposes of this database, a more abstract and less traditional
example is the ability to designate certain less-discretely-defined portions of a reference as
having a different set of authors from the containing Reference. This capability is especially
important for distinguishing text constituting original descriptions of taxon names from the
containing reference, in cases where the authorship of the taxon name is not identical to the
authorship of the containing Reference. The hierarchy of references, when it exists, is tracked by
the recursive ParentReferenceID linkage. As with Organizations, no Reference can be its own
parent, and no multiple chain of Reference→ParentReference can be circular.

Every Reference is classified according to its ReferenceTypeID, which is drawn from the
tbl_ReferenceType table. Of the 19 reference types listed in blue text on the diagram, all but
three (‘Book Series’, ‘Determination’ and ‘Sub-Reference’), are directly mapped from EndNote.
The ‘Book Series’ ReferenceType was added to accommodate citations of entire series, rather
than individual volumes in a series. ‘Determination’ was added to accommodate the special
group of unpublished References that represent taxonomic identifications of specimens. These
could be lumped in with the ‘Communication’ (=‘Personal Communication’) ReferenceType, but
I decided to assign it to its own type for easier filtering. The ‘Sub-Reference’ ReferenceType is

 21

Pyle Taxonomy Schema – DRAFT AGENTS

intended to represent a portion of another, encompassing Reference (excluding cases that can be
assigned to the ‘Book Section’ ReferenceType), primarily to accommodate assigning appropriate
authorship to taxon names (when such authorship differs from the encompassing Reference).

Two boolean fields – IsPublished and IsParent – simply indicate which ReferenceTypes
are published, and which can serve as a Parent Reference to another Reference (respectively).
Additionally, tbl_ReferenceType contains one field for each field of tbl_Reference (except
ParentReferenceID), to indicate which of the latter fields are used (and how they are used),
depending on which ReferenceTypeID is selected for the Reference instance (see below, and also
Table 1).

Depending on which ReferenceTypeID is selected for the particular Reference instance,
there may be a link to the tbl_ReferenceSeries via the ReferenceSeriesID Foreign Key. The
reference types that can be linked to a reference series include ‘Generic’, ‘Book’, ‘Book
Section’, ‘Conference Proceedings’, ‘Edited Book’, ‘Journal’, ‘Magazine Article’, and
‘Newspaper Article’. Attributes of tbl_ReferenceSeries are indicated in the diagram, and are not
as yet rigidly defined.

Each Reference instance may be associated with the tbl_Language table, via the
LanguageID Foreign Key, to indicate which language the Reference was primarily written in.

The Non-Key Attributes of tbl_Reference are, for the most part, drawn from EndNote’s
default fields. Not all attributes apply equally, or even at all, to all reference types. A matrix of
how each type utilizes each field (derived directly from EndNote) is represented herein as Table
1. For simplicity, I have chosen to keep these fields in one ‘flat’ tbl_Reference table.
Alternatively, they could, be broken out into different Reference subtypes; either one for each
ReferenceType, or several clusters of one or more ReferenceType with similar fields (e.g., Books
vs. Periodicals, Published vs. Unpublished, etc.).

Every Reference instance must be linked to one or more Agent(s) representing the
Author(s) of the Reference, via the tbl_ReferenceAuthor entity. In cases where the specific
Author is not known, a link is established to an ambiguous instance of Agent representing
“Anonymous” or “Unspecified”. The important point here is that a Reference is defined in the
context of its authoring Agent(s); hence the requirement for at least one instance of
tbl_ReferenceAuthor for each instance of tbl_Reference. The Sequence field is used to
establish the sequence of authors for multi-authored references. The ExAuthor field is set to
‘False’ for all authors of all References, except those specific authors who are authors of taxon
names but not authors of the Reference itself. For example, suppose a Reference is linked to
ReferenceAuthors Smith, Jones, and Johnson, with the ExAuthor field in Johnson’s record of
tbl_ReferenceAuthor flagged ‘True’. Any Protonym instance linked to this Reference (see
“TAXA” section) would treat the authorship of that Protonym as “Smith and Jones (ex
Johnson)”. If this Reference happens to be of type ‘Sub-Reference’, which itself is included
within a publication authored by Jones and Wilder, then the authorship for the taxon name would
be interpreted as “Smith and Jones (ex Johnson) in Jones and Wilder”.

As an added feature, I have included the tbl_ReferenceBibliography table, to record
which References (BibliographyID) cite which other references (ReferenceID) in their
Bibliography (or elsewhere). This can be useful in deciphering implied taxonomic concepts, to
indicate whether or not one Reference had access to another Reference at the time the

 22

Pyle Taxonomy Schema – DRAFT AGENTS

Taxonomic concept was formulated. The Sequence field is used to establish the sequence of cited
References, as they appear in the citing Reference.

[CheatAuthors is used to store formatted single- and dual-author last names, or first-author last
name plus “et. al" for multi-authored References. CheatFullAuthors is used to store formatted
Author names as they generally appear in bibliographies – last name and given initials for each
individual author. CheatCitation is a concatenation of CheatAuthors and the Year field.]

tbl_Glossary
A generic system of defining words is established via the tbl_Glossary table. Each Word

exists in the context of a Language (linked from tbl_Language via the LanguageID Foreign
Key), and is assigned a WordType (linked from tbl_WordType via the WordTypeID Foreign
Key – examples of WordType shown in blue text on diagram). A short Definition is provided for
each Word.

Individual words can be cross-referenced to other words via the tbl_Thesaurus table.
The nature of the relationship between the two words (e.g., ‘Synonym’, ‘Related Word’, etc.) is
indicated in the Relationship field. Such relationships are not automatically treated as
symmetrical, so in the case of a symmetrical relationship (e.g., ‘Synonym’), two instances are
required in the tbl_Thesaurus table. Future versions of this schema may define a
tbl_RelathioshipType table as a separate linked entity, allowing additional attributes for each
relationship type (e.g., IsSymmetrical, etc.).

Individual instances of tbl_Glossary are linked to instances of tbl_Reference via the
tbl_ReferenceKeyword table. If the indicated Keyword was designated in the linked Reference
itself, then the Cited field is set to ‘True’. Otherwise, it is assumed that Keyword assignment
was created by the database user.

Limitations
• The general limitation of the whole Reference structure stems from its foundation in the

EndNote model. A somewhat denormalized flat tbl_Reference structure is taken as a
compromise to maintain simplicity of import and export capability.

 23

Pyle Taxonomy Schema – DRAFT AGENTS

T
hesis

Sub-R
eference

R
eport

Patent

N
ew

spaper
A

rticle

M
ap

M
agazine A

rticle

Journal A
rticle

E
dited B

ook

D
eterm

ination

C
onference

Proceedings

C
om

puter
Program

C
om

m
unication

B
ook Series

B
ook Section

B
ook

A
udiovisual

A
rtw

ork

G
eneric

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Y
ear

Title

Title

Title

Title

Title

Title

Title

Title

Title

Title

Title

Title

Title

Title

Title

Title

Title

Title

T
itle

Parent
Title

Parent
Title

-

Published
Source

- - - - - -

C
onference
N

am
e

- - -

B
ook

Title

Parent
Title

- -

Secondary
T

itle

D
epartm

ent

Parent
A

uthors

Editor

- - - - - - -

Editor

- - -

Editor

Editor

- -

Secondary
A

uthor

U
niversity

-

Institution

A
ssignee

-

Publisher

- -

Publisher

Institution

Publisher

Publisher

-

Publisher

Publisher

Publisher

Publisher

Publisher

Publisher

C
ity

-

C
ity

C
ountry

C
ity

C
ity

- -

C
ity

-

Location

C
ity

-

C
ity

C
ity

C
ity

C
ity

C
ity

Place
Published

- - -

V
olum

e

- -

V
olum

e

V
olum

e

V
olum

e

-

V
olum

e

V
ersion

- -

V
olum

e

V
olum

e

- -

V
olum

e

- - - - - - - -

N
um

ber of
V

olum
es

-

N
um

ber of
V

olum
es

- -

N
um

ber of
V

olum
es

N
um

ber of
V

olum
es

N
um

ber of
V

olum
es

- -

N
um

ber of
V

olum
es

- - -

N
um

ber

-

Scale

Issue

N
um

ber

N
um

ber

- - - - -

N
um

ber

N
um

ber

- -

N
um

ber

Pages

Pages

Pages

Pages

Pages

-

Pages

Pages

Pages

-

Pages

- -

Pages

Pages

Pages

- -

Pages

Figures

Figures

Figures

Figures

Figures

-

Figures

Figures

Figures

-

Figures

- -

Figures

Figures

Figures

- -

Figures

- - - - -

Edition

- -

Edition

-

Edition

Platform

-

Edition

Edition

Edition

- -

E
dition

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

D
ate

Type of
W

ork

Type of
W

ork

Type of
W

ork

- -

Type of
W

ork

- - - - -

Type of
W

ork

Type

- - -

Type of
W

ork

Type of
W

ork

T
ype of

W
ork

- - - - - - - -

Translator

- - - -

Translator

Translator

Translator

- -

Subsidiary
A

uthor

- - - - - - -

A
lternate

Journal

- - - - - - - - - -

A
lternate
T

itle

- -

R
pt.

N
o.

Pat.
N

o.

- - - -

ISB
N

- - - -

ISB
N

ISB
N

ISB
N

- -

ISB
N

T
able 1. M

atrix of N
on-K

ey R
eference attribute uses, by R

eference Type.

 24

Pyle Taxonomy Schema – DRAFT AGENTS

 25

tbl_Reference

ReferenceID P lng

ParentReferenceID F lng
ReferenceTypeID F lng

eferenceSeriesID F lng
uageID F lng

 txt
 mem

SecondaryTitle mem
SecondaryAuthor txt
Publisher txt
PlacePublished txt

me txt
NumberVolumes txt
Number txt
Pages txt
Figures txt
Edition txt
DatePublished date
DateRemarks txt
TypeWork txt

ubsidiaryAuthor txt
lternateTitle mem
BN txt

ors txt
CheatFullAuthors txt
CheatCitation txt

R
Lang

Year
Title

N

ReferenceAuthorID P lng
ReferenceID F lng
AgentID F lng

Sequence int
ExAuthor bool

VoluAgentID P lng
[etc…]

S
A
IS

CheatAuth

Cheat A

ReferenceKeywordID P lng
ReferenceID F lng
GlossaryID F lng

Cited bool

Foreign Keys

on-Key Attributes

ttributes

Unique Keys

ReferenceType:
Generic
Artwork
Audiovisual Material
Book
Book Section
Book Series
Communication
Computer Program
Conference Proceedings
Determination
Edited Book
Journal Article
Magazine Article
Map
Newspaper Article
Patent
Report
Sub-Reference
Thesis

tbl_ReferenceType

ReferenceTypeID P byt
ReferenceType txt

IsPublished bool
IsParent bool
[See Table 1]

Unique Keys

Non-Key Attributes

ParentReferenceID cannot equal ReferenceID for
a single instance, nor can a circular relation be
established for multiple instances.
ParentReferenceID must be drawn from
References of Type flagged with IsParent=True.

tbl_ReferenceBibliography

ReferenceBibliographyID P lng
BibliographyID F lng

eferenceID F lng

Sequence int

R

ThesaurusID P lng
GlossaryID F lng
RelatedGlossaryID F lng

Relationship txt

Non-Key Attributes

Unique Keys

tbl_ReferenceSeries

ReferenceSeriesID P lng

Acronym txt
Abbreviation txt
Title txt
Series txt
Editor txt
Dates txt

Non-Key Attributes

Unique Keys

tbl_Language

LanguageID P lng
Language txt

Unique Keys

tbl_ReferenceAuthor

Non-Key Attributes

Unique Keys

All instances of tbl_Reference must be represented
by at least one instance of tbl_ReferenceAuthor. If
no author is given for the Reference, then the AgentID
FK would point to an ambiguous instance in
tbl_Agent ‘Anonymous’ or ‘unspecified’.

tbl_Agent
Unique Keys

tbl_ReferenceKeyword

Non-Key Attributes

Unique Keys

tbl_Glossary

GlossaryID P lng

LanguageID lng
WordTypeID byt

Word txt
Definition mem

Non-Key Attributes

Unique Keys

Foreign Keys

tbl_WordType

WordTypeID P byt
WordType t

WordType:
Noun (genitive)
Noun (apposition)
Adjective

Unique Keys

tbl_Thesaurus

Non-Key Attributes

Unique Keys

Complete field structure for
tbl_ReferenceSeries not yet finalized.

If Cited=True, then the Keyword indicated
by GlossaryID was identified as such within
the corresponding Reference itself.

The Reference indicated by BibliographyID
includes within its bibliography those
References indicated by ReferenceID,
appearing in the indicated Sequence.

Relationship:
Synonym
Related Word
etc…
xt Verb
Acronym
etc…

	DRAFT
	OVERVIEW
	TAXA
	Overview
	Name-Resolution Circumscription Definitions
	Specimen-Resolution Circumscription Definitions
	Other Circumscription Definition Resolutions

	tbl_Assertion
	tbl_Protonym
	tbl_HybridAssertion
	Limitations

	AGENTS
	Overview
	tbl_Agent
	tbl_Organization
	tbl_Person
	tbl_AgentAssociation
	Limitations

	REFERENCES
	Overview
	tbl_Reference
	tbl_Glossary
	Limitations
	
	
	
	
	Generic
	Table 1. Matrix of Non-Key Reference attribute uses, by Reference Type.

